3.2.51 \(\int \frac {\sqrt {a+a \sec (e+f x)}}{c+d \sec (e+f x)} \, dx\) [151]

Optimal. Leaf size=105 \[ \frac {2 \sqrt {a} \text {ArcTan}\left (\frac {\sqrt {a} \tan (e+f x)}{\sqrt {a+a \sec (e+f x)}}\right )}{c f}-\frac {2 \sqrt {a} \sqrt {d} \text {ArcTan}\left (\frac {\sqrt {a} \sqrt {d} \tan (e+f x)}{\sqrt {c+d} \sqrt {a+a \sec (e+f x)}}\right )}{c \sqrt {c+d} f} \]

[Out]

2*arctan(a^(1/2)*tan(f*x+e)/(a+a*sec(f*x+e))^(1/2))*a^(1/2)/c/f-2*arctan(a^(1/2)*d^(1/2)*tan(f*x+e)/(c+d)^(1/2
)/(a+a*sec(f*x+e))^(1/2))*a^(1/2)*d^(1/2)/c/f/(c+d)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.16, antiderivative size = 105, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, integrand size = 27, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.185, Rules used = {4010, 3859, 209, 4052, 211} \begin {gather*} \frac {2 \sqrt {a} \text {ArcTan}\left (\frac {\sqrt {a} \tan (e+f x)}{\sqrt {a \sec (e+f x)+a}}\right )}{c f}-\frac {2 \sqrt {a} \sqrt {d} \text {ArcTan}\left (\frac {\sqrt {a} \sqrt {d} \tan (e+f x)}{\sqrt {c+d} \sqrt {a \sec (e+f x)+a}}\right )}{c f \sqrt {c+d}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Sqrt[a + a*Sec[e + f*x]]/(c + d*Sec[e + f*x]),x]

[Out]

(2*Sqrt[a]*ArcTan[(Sqrt[a]*Tan[e + f*x])/Sqrt[a + a*Sec[e + f*x]]])/(c*f) - (2*Sqrt[a]*Sqrt[d]*ArcTan[(Sqrt[a]
*Sqrt[d]*Tan[e + f*x])/(Sqrt[c + d]*Sqrt[a + a*Sec[e + f*x]])])/(c*Sqrt[c + d]*f)

Rule 209

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*ArcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 211

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/Rt[a/b, 2]], x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 3859

Int[Sqrt[csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[-2*(b/d), Subst[Int[1/(a + x^2), x], x, b*(C
ot[c + d*x]/Sqrt[a + b*Csc[c + d*x]])], x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 - b^2, 0]

Rule 4010

Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)]/(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_)), x_Symbol] :> Dist[1/c,
Int[Sqrt[a + b*Csc[e + f*x]], x], x] - Dist[d/c, Int[Csc[e + f*x]*(Sqrt[a + b*Csc[e + f*x]]/(c + d*Csc[e + f*x
])), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && (EqQ[a^2 - b^2, 0] || EqQ[c^2 - d^2, 0])

Rule 4052

Int[(csc[(e_.) + (f_.)*(x_)]*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)])/(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_)
), x_Symbol] :> Dist[-2*(b/f), Subst[Int[1/(b*c + a*d + d*x^2), x], x, b*(Cot[e + f*x]/Sqrt[a + b*Csc[e + f*x]
])], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0]

Rubi steps

\begin {align*} \int \frac {\sqrt {a+a \sec (e+f x)}}{c+d \sec (e+f x)} \, dx &=\frac {\int \sqrt {a+a \sec (e+f x)} \, dx}{c}-\frac {d \int \frac {\sec (e+f x) \sqrt {a+a \sec (e+f x)}}{c+d \sec (e+f x)} \, dx}{c}\\ &=-\frac {(2 a) \text {Subst}\left (\int \frac {1}{a+x^2} \, dx,x,-\frac {a \tan (e+f x)}{\sqrt {a+a \sec (e+f x)}}\right )}{c f}+\frac {(2 a d) \text {Subst}\left (\int \frac {1}{a c+a d+d x^2} \, dx,x,-\frac {a \tan (e+f x)}{\sqrt {a+a \sec (e+f x)}}\right )}{c f}\\ &=\frac {2 \sqrt {a} \tan ^{-1}\left (\frac {\sqrt {a} \tan (e+f x)}{\sqrt {a+a \sec (e+f x)}}\right )}{c f}-\frac {2 \sqrt {a} \sqrt {d} \tan ^{-1}\left (\frac {\sqrt {a} \sqrt {d} \tan (e+f x)}{\sqrt {c+d} \sqrt {a+a \sec (e+f x)}}\right )}{c \sqrt {c+d} f}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains higher order function than in optimal. Order 4 vs. order 3 in optimal.
time = 26.11, size = 2650, normalized size = 25.24 \begin {gather*} \text {Result too large to show} \end {gather*}

Warning: Unable to verify antiderivative.

[In]

Integrate[Sqrt[a + a*Sec[e + f*x]]/(c + d*Sec[e + f*x]),x]

[Out]

(-4*Sqrt[2]*Cos[(e + f*x)/4]^2*Sqrt[(-1 + Sqrt[2] - (-2 + Sqrt[2])*Cos[(e + f*x)/2])/(1 + Cos[(e + f*x)/2])]*(
d + c*Cos[e + f*x])*(c*EllipticF[ArcSin[Tan[(e + f*x)/4]/Sqrt[3 - 2*Sqrt[2]]], 17 - 12*Sqrt[2]] - 2*(c + d)*El
lipticPi[-3 + 2*Sqrt[2], ArcSin[Tan[(e + f*x)/4]/Sqrt[3 - 2*Sqrt[2]]], 17 - 12*Sqrt[2]] + d*(EllipticPi[-(((-3
 + 2*Sqrt[2])*(c + d))/(3*c + 2*Sqrt[2]*Sqrt[c*(c - d)] - d)), ArcSin[Tan[(e + f*x)/4]/Sqrt[3 - 2*Sqrt[2]]], 1
7 - 12*Sqrt[2]] + EllipticPi[((-3 + 2*Sqrt[2])*(c + d))/(-3*c + 2*Sqrt[2]*Sqrt[c*(c - d)] + d), ArcSin[Tan[(e
+ f*x)/4]/Sqrt[3 - 2*Sqrt[2]]], 17 - 12*Sqrt[2]]))*Sec[(e + f*x)/2]*((Cos[(e + f*x)/2]*Sqrt[Sec[e + f*x]])/(2*
(d + c*Cos[e + f*x])) + (Cos[(3*(e + f*x))/2]*Sqrt[Sec[e + f*x]])/(2*(d + c*Cos[e + f*x])))*Sec[e + f*x]*Sqrt[
a*(1 + Sec[e + f*x])]*Sqrt[3 - 2*Sqrt[2] - Tan[(e + f*x)/4]^2])/(c*(c + d)*f*(c + d*Sec[e + f*x])*((Sqrt[2]*Sq
rt[(-1 + Sqrt[2] - (-2 + Sqrt[2])*Cos[(e + f*x)/2])/(1 + Cos[(e + f*x)/2])]*(c*EllipticF[ArcSin[Tan[(e + f*x)/
4]/Sqrt[3 - 2*Sqrt[2]]], 17 - 12*Sqrt[2]] - 2*(c + d)*EllipticPi[-3 + 2*Sqrt[2], ArcSin[Tan[(e + f*x)/4]/Sqrt[
3 - 2*Sqrt[2]]], 17 - 12*Sqrt[2]] + d*(EllipticPi[-(((-3 + 2*Sqrt[2])*(c + d))/(3*c + 2*Sqrt[2]*Sqrt[c*(c - d)
] - d)), ArcSin[Tan[(e + f*x)/4]/Sqrt[3 - 2*Sqrt[2]]], 17 - 12*Sqrt[2]] + EllipticPi[((-3 + 2*Sqrt[2])*(c + d)
)/(-3*c + 2*Sqrt[2]*Sqrt[c*(c - d)] + d), ArcSin[Tan[(e + f*x)/4]/Sqrt[3 - 2*Sqrt[2]]], 17 - 12*Sqrt[2]]))*Sqr
t[Sec[e + f*x]]*Tan[(e + f*x)/4])/(c*(c + d)*Sqrt[3 - 2*Sqrt[2] - Tan[(e + f*x)/4]^2]) + (2*Sqrt[2]*Cos[(e + f
*x)/4]*Sqrt[(-1 + Sqrt[2] - (-2 + Sqrt[2])*Cos[(e + f*x)/2])/(1 + Cos[(e + f*x)/2])]*(c*EllipticF[ArcSin[Tan[(
e + f*x)/4]/Sqrt[3 - 2*Sqrt[2]]], 17 - 12*Sqrt[2]] - 2*(c + d)*EllipticPi[-3 + 2*Sqrt[2], ArcSin[Tan[(e + f*x)
/4]/Sqrt[3 - 2*Sqrt[2]]], 17 - 12*Sqrt[2]] + d*(EllipticPi[-(((-3 + 2*Sqrt[2])*(c + d))/(3*c + 2*Sqrt[2]*Sqrt[
c*(c - d)] - d)), ArcSin[Tan[(e + f*x)/4]/Sqrt[3 - 2*Sqrt[2]]], 17 - 12*Sqrt[2]] + EllipticPi[((-3 + 2*Sqrt[2]
)*(c + d))/(-3*c + 2*Sqrt[2]*Sqrt[c*(c - d)] + d), ArcSin[Tan[(e + f*x)/4]/Sqrt[3 - 2*Sqrt[2]]], 17 - 12*Sqrt[
2]]))*Sqrt[Sec[e + f*x]]*Sin[(e + f*x)/4]*Sqrt[3 - 2*Sqrt[2] - Tan[(e + f*x)/4]^2])/(c*(c + d)) - (2*Sqrt[2]*C
os[(e + f*x)/4]^2*(c*EllipticF[ArcSin[Tan[(e + f*x)/4]/Sqrt[3 - 2*Sqrt[2]]], 17 - 12*Sqrt[2]] - 2*(c + d)*Elli
pticPi[-3 + 2*Sqrt[2], ArcSin[Tan[(e + f*x)/4]/Sqrt[3 - 2*Sqrt[2]]], 17 - 12*Sqrt[2]] + d*(EllipticPi[-(((-3 +
 2*Sqrt[2])*(c + d))/(3*c + 2*Sqrt[2]*Sqrt[c*(c - d)] - d)), ArcSin[Tan[(e + f*x)/4]/Sqrt[3 - 2*Sqrt[2]]], 17
- 12*Sqrt[2]] + EllipticPi[((-3 + 2*Sqrt[2])*(c + d))/(-3*c + 2*Sqrt[2]*Sqrt[c*(c - d)] + d), ArcSin[Tan[(e +
f*x)/4]/Sqrt[3 - 2*Sqrt[2]]], 17 - 12*Sqrt[2]]))*Sqrt[Sec[e + f*x]]*(((-2 + Sqrt[2])*Sin[(e + f*x)/2])/(2*(1 +
 Cos[(e + f*x)/2])) + ((-1 + Sqrt[2] - (-2 + Sqrt[2])*Cos[(e + f*x)/2])*Sin[(e + f*x)/2])/(2*(1 + Cos[(e + f*x
)/2])^2))*Sqrt[3 - 2*Sqrt[2] - Tan[(e + f*x)/4]^2])/(c*(c + d)*Sqrt[(-1 + Sqrt[2] - (-2 + Sqrt[2])*Cos[(e + f*
x)/2])/(1 + Cos[(e + f*x)/2])]) - (2*Sqrt[2]*Cos[(e + f*x)/4]^2*Sqrt[(-1 + Sqrt[2] - (-2 + Sqrt[2])*Cos[(e + f
*x)/2])/(1 + Cos[(e + f*x)/2])]*(c*EllipticF[ArcSin[Tan[(e + f*x)/4]/Sqrt[3 - 2*Sqrt[2]]], 17 - 12*Sqrt[2]] -
2*(c + d)*EllipticPi[-3 + 2*Sqrt[2], ArcSin[Tan[(e + f*x)/4]/Sqrt[3 - 2*Sqrt[2]]], 17 - 12*Sqrt[2]] + d*(Ellip
ticPi[-(((-3 + 2*Sqrt[2])*(c + d))/(3*c + 2*Sqrt[2]*Sqrt[c*(c - d)] - d)), ArcSin[Tan[(e + f*x)/4]/Sqrt[3 - 2*
Sqrt[2]]], 17 - 12*Sqrt[2]] + EllipticPi[((-3 + 2*Sqrt[2])*(c + d))/(-3*c + 2*Sqrt[2]*Sqrt[c*(c - d)] + d), Ar
cSin[Tan[(e + f*x)/4]/Sqrt[3 - 2*Sqrt[2]]], 17 - 12*Sqrt[2]]))*Sec[e + f*x]^(3/2)*Sin[e + f*x]*Sqrt[3 - 2*Sqrt
[2] - Tan[(e + f*x)/4]^2])/(c*(c + d)) - (4*Sqrt[2]*Cos[(e + f*x)/4]^2*Sqrt[(-1 + Sqrt[2] - (-2 + Sqrt[2])*Cos
[(e + f*x)/2])/(1 + Cos[(e + f*x)/2])]*Sqrt[Sec[e + f*x]]*Sqrt[3 - 2*Sqrt[2] - Tan[(e + f*x)/4]^2]*((c*Sec[(e
+ f*x)/4]^2)/(4*Sqrt[3 - 2*Sqrt[2]]*Sqrt[1 - Tan[(e + f*x)/4]^2/(3 - 2*Sqrt[2])]*Sqrt[1 - ((17 - 12*Sqrt[2])*T
an[(e + f*x)/4]^2)/(3 - 2*Sqrt[2])]) - ((c + d)*Sec[(e + f*x)/4]^2)/(2*Sqrt[3 - 2*Sqrt[2]]*Sqrt[1 - Tan[(e + f
*x)/4]^2/(3 - 2*Sqrt[2])]*Sqrt[1 - ((17 - 12*Sqrt[2])*Tan[(e + f*x)/4]^2)/(3 - 2*Sqrt[2])]*(1 - ((-3 + 2*Sqrt[
2])*Tan[(e + f*x)/4]^2)/(3 - 2*Sqrt[2]))) + d*(Sec[(e + f*x)/4]^2/(4*Sqrt[3 - 2*Sqrt[2]]*Sqrt[1 - Tan[(e + f*x
)/4]^2/(3 - 2*Sqrt[2])]*Sqrt[1 - ((17 - 12*Sqrt[2])*Tan[(e + f*x)/4]^2)/(3 - 2*Sqrt[2])]*(1 + ((-3 + 2*Sqrt[2]
)*(c + d)*Tan[(e + f*x)/4]^2)/((3 - 2*Sqrt[2])*(3*c + 2*Sqrt[2]*Sqrt[c*(c - d)] - d)))) + Sec[(e + f*x)/4]^2/(
4*Sqrt[3 - 2*Sqrt[2]]*Sqrt[1 - Tan[(e + f*x)/4]^2/(3 - 2*Sqrt[2])]*Sqrt[1 - ((17 - 12*Sqrt[2])*Tan[(e + f*x)/4
]^2)/(3 - 2*Sqrt[2])]*(1 - ((-3 + 2*Sqrt[2])*(c + d)*Tan[(e + f*x)/4]^2)/((3 - 2*Sqrt[2])*(-3*c + 2*Sqrt[2]*Sq
rt[c*(c - d)] + d)))))))/(c*(c + d))))

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(500\) vs. \(2(85)=170\).
time = 2.89, size = 501, normalized size = 4.77

method result size
default \(-\frac {\left (2 \sqrt {\frac {d}{c -d}}\, \sqrt {\left (c +d \right ) \left (c -d \right )}\, \arctanh \left (\frac {\sqrt {-\frac {2 \cos \left (f x +e \right )}{\cos \left (f x +e \right )+1}}\, \sin \left (f x +e \right ) \sqrt {2}}{2 \cos \left (f x +e \right )}\right )+d \ln \left (-\frac {2 \left (\sqrt {2}\, \sqrt {\frac {d}{c -d}}\, \sqrt {-\frac {2 \cos \left (f x +e \right )}{\cos \left (f x +e \right )+1}}\, c \sin \left (f x +e \right )-\sqrt {2}\, \sqrt {\frac {d}{c -d}}\, \sqrt {-\frac {2 \cos \left (f x +e \right )}{\cos \left (f x +e \right )+1}}\, d \sin \left (f x +e \right )-\sqrt {\left (c +d \right ) \left (c -d \right )}\, \cos \left (f x +e \right )-c \sin \left (f x +e \right )+d \sin \left (f x +e \right )+\sqrt {\left (c +d \right ) \left (c -d \right )}\right )}{\sqrt {\left (c +d \right ) \left (c -d \right )}\, \sin \left (f x +e \right )+c \cos \left (f x +e \right )-d \cos \left (f x +e \right )-c +d}\right )-d \ln \left (\frac {2 \sqrt {2}\, \sqrt {\frac {d}{c -d}}\, \sqrt {-\frac {2 \cos \left (f x +e \right )}{\cos \left (f x +e \right )+1}}\, c \sin \left (f x +e \right )-2 \sqrt {2}\, \sqrt {\frac {d}{c -d}}\, \sqrt {-\frac {2 \cos \left (f x +e \right )}{\cos \left (f x +e \right )+1}}\, d \sin \left (f x +e \right )-2 c \sin \left (f x +e \right )+2 d \sin \left (f x +e \right )+2 \sqrt {\left (c +d \right ) \left (c -d \right )}\, \cos \left (f x +e \right )-2 \sqrt {\left (c +d \right ) \left (c -d \right )}}{\sqrt {\left (c +d \right ) \left (c -d \right )}\, \sin \left (f x +e \right )-c \cos \left (f x +e \right )+d \cos \left (f x +e \right )+c -d}\right )\right ) \sqrt {-\frac {2 \cos \left (f x +e \right )}{\cos \left (f x +e \right )+1}}\, \sqrt {\frac {a \left (\cos \left (f x +e \right )+1\right )}{\cos \left (f x +e \right )}}\, \sqrt {2}}{2 f \sqrt {\frac {d}{c -d}}\, c \sqrt {\left (c +d \right ) \left (c -d \right )}}\) \(501\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+a*sec(f*x+e))^(1/2)/(c+d*sec(f*x+e)),x,method=_RETURNVERBOSE)

[Out]

-1/2/f*(2*(d/(c-d))^(1/2)*((c+d)*(c-d))^(1/2)*arctanh(1/2*(-2*cos(f*x+e)/(cos(f*x+e)+1))^(1/2)*sin(f*x+e)/cos(
f*x+e)*2^(1/2))+d*ln(-2*(2^(1/2)*(d/(c-d))^(1/2)*(-2*cos(f*x+e)/(cos(f*x+e)+1))^(1/2)*c*sin(f*x+e)-2^(1/2)*(d/
(c-d))^(1/2)*(-2*cos(f*x+e)/(cos(f*x+e)+1))^(1/2)*d*sin(f*x+e)-((c+d)*(c-d))^(1/2)*cos(f*x+e)-c*sin(f*x+e)+d*s
in(f*x+e)+((c+d)*(c-d))^(1/2))/(((c+d)*(c-d))^(1/2)*sin(f*x+e)+c*cos(f*x+e)-d*cos(f*x+e)-c+d))-d*ln(2*(2^(1/2)
*(d/(c-d))^(1/2)*(-2*cos(f*x+e)/(cos(f*x+e)+1))^(1/2)*c*sin(f*x+e)-2^(1/2)*(d/(c-d))^(1/2)*(-2*cos(f*x+e)/(cos
(f*x+e)+1))^(1/2)*d*sin(f*x+e)-c*sin(f*x+e)+d*sin(f*x+e)+((c+d)*(c-d))^(1/2)*cos(f*x+e)-((c+d)*(c-d))^(1/2))/(
((c+d)*(c-d))^(1/2)*sin(f*x+e)-c*cos(f*x+e)+d*cos(f*x+e)+c-d)))*(-2*cos(f*x+e)/(cos(f*x+e)+1))^(1/2)*(a*(cos(f
*x+e)+1)/cos(f*x+e))^(1/2)*2^(1/2)/(d/(c-d))^(1/2)/c/((c+d)*(c-d))^(1/2)

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sec(f*x+e))^(1/2)/(c+d*sec(f*x+e)),x, algorithm="maxima")

[Out]

integrate(sqrt(a*sec(f*x + e) + a)/(d*sec(f*x + e) + c), x)

________________________________________________________________________________________

Fricas [A]
time = 2.59, size = 715, normalized size = 6.81 \begin {gather*} \left [\frac {\sqrt {-\frac {a d}{c + d}} \log \left (\frac {2 \, {\left (c + d\right )} \sqrt {-\frac {a d}{c + d}} \sqrt {\frac {a \cos \left (f x + e\right ) + a}{\cos \left (f x + e\right )}} \cos \left (f x + e\right ) \sin \left (f x + e\right ) + {\left (a c + 2 \, a d\right )} \cos \left (f x + e\right )^{2} - a d + {\left (a c + a d\right )} \cos \left (f x + e\right )}{c \cos \left (f x + e\right )^{2} + {\left (c + d\right )} \cos \left (f x + e\right ) + d}\right ) + \sqrt {-a} \log \left (\frac {2 \, a \cos \left (f x + e\right )^{2} - 2 \, \sqrt {-a} \sqrt {\frac {a \cos \left (f x + e\right ) + a}{\cos \left (f x + e\right )}} \cos \left (f x + e\right ) \sin \left (f x + e\right ) + a \cos \left (f x + e\right ) - a}{\cos \left (f x + e\right ) + 1}\right )}{c f}, -\frac {2 \, \sqrt {a} \arctan \left (\frac {\sqrt {\frac {a \cos \left (f x + e\right ) + a}{\cos \left (f x + e\right )}} \cos \left (f x + e\right )}{\sqrt {a} \sin \left (f x + e\right )}\right ) - \sqrt {-\frac {a d}{c + d}} \log \left (\frac {2 \, {\left (c + d\right )} \sqrt {-\frac {a d}{c + d}} \sqrt {\frac {a \cos \left (f x + e\right ) + a}{\cos \left (f x + e\right )}} \cos \left (f x + e\right ) \sin \left (f x + e\right ) + {\left (a c + 2 \, a d\right )} \cos \left (f x + e\right )^{2} - a d + {\left (a c + a d\right )} \cos \left (f x + e\right )}{c \cos \left (f x + e\right )^{2} + {\left (c + d\right )} \cos \left (f x + e\right ) + d}\right )}{c f}, \frac {2 \, \sqrt {\frac {a d}{c + d}} \arctan \left (\frac {{\left (c + d\right )} \sqrt {\frac {a d}{c + d}} \sqrt {\frac {a \cos \left (f x + e\right ) + a}{\cos \left (f x + e\right )}} \cos \left (f x + e\right )}{a d \sin \left (f x + e\right )}\right ) + \sqrt {-a} \log \left (\frac {2 \, a \cos \left (f x + e\right )^{2} - 2 \, \sqrt {-a} \sqrt {\frac {a \cos \left (f x + e\right ) + a}{\cos \left (f x + e\right )}} \cos \left (f x + e\right ) \sin \left (f x + e\right ) + a \cos \left (f x + e\right ) - a}{\cos \left (f x + e\right ) + 1}\right )}{c f}, -\frac {2 \, {\left (\sqrt {a} \arctan \left (\frac {\sqrt {\frac {a \cos \left (f x + e\right ) + a}{\cos \left (f x + e\right )}} \cos \left (f x + e\right )}{\sqrt {a} \sin \left (f x + e\right )}\right ) - \sqrt {\frac {a d}{c + d}} \arctan \left (\frac {{\left (c + d\right )} \sqrt {\frac {a d}{c + d}} \sqrt {\frac {a \cos \left (f x + e\right ) + a}{\cos \left (f x + e\right )}} \cos \left (f x + e\right )}{a d \sin \left (f x + e\right )}\right )\right )}}{c f}\right ] \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sec(f*x+e))^(1/2)/(c+d*sec(f*x+e)),x, algorithm="fricas")

[Out]

[(sqrt(-a*d/(c + d))*log((2*(c + d)*sqrt(-a*d/(c + d))*sqrt((a*cos(f*x + e) + a)/cos(f*x + e))*cos(f*x + e)*si
n(f*x + e) + (a*c + 2*a*d)*cos(f*x + e)^2 - a*d + (a*c + a*d)*cos(f*x + e))/(c*cos(f*x + e)^2 + (c + d)*cos(f*
x + e) + d)) + sqrt(-a)*log((2*a*cos(f*x + e)^2 - 2*sqrt(-a)*sqrt((a*cos(f*x + e) + a)/cos(f*x + e))*cos(f*x +
 e)*sin(f*x + e) + a*cos(f*x + e) - a)/(cos(f*x + e) + 1)))/(c*f), -(2*sqrt(a)*arctan(sqrt((a*cos(f*x + e) + a
)/cos(f*x + e))*cos(f*x + e)/(sqrt(a)*sin(f*x + e))) - sqrt(-a*d/(c + d))*log((2*(c + d)*sqrt(-a*d/(c + d))*sq
rt((a*cos(f*x + e) + a)/cos(f*x + e))*cos(f*x + e)*sin(f*x + e) + (a*c + 2*a*d)*cos(f*x + e)^2 - a*d + (a*c +
a*d)*cos(f*x + e))/(c*cos(f*x + e)^2 + (c + d)*cos(f*x + e) + d)))/(c*f), (2*sqrt(a*d/(c + d))*arctan((c + d)*
sqrt(a*d/(c + d))*sqrt((a*cos(f*x + e) + a)/cos(f*x + e))*cos(f*x + e)/(a*d*sin(f*x + e))) + sqrt(-a)*log((2*a
*cos(f*x + e)^2 - 2*sqrt(-a)*sqrt((a*cos(f*x + e) + a)/cos(f*x + e))*cos(f*x + e)*sin(f*x + e) + a*cos(f*x + e
) - a)/(cos(f*x + e) + 1)))/(c*f), -2*(sqrt(a)*arctan(sqrt((a*cos(f*x + e) + a)/cos(f*x + e))*cos(f*x + e)/(sq
rt(a)*sin(f*x + e))) - sqrt(a*d/(c + d))*arctan((c + d)*sqrt(a*d/(c + d))*sqrt((a*cos(f*x + e) + a)/cos(f*x +
e))*cos(f*x + e)/(a*d*sin(f*x + e))))/(c*f)]

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\sqrt {a \left (\sec {\left (e + f x \right )} + 1\right )}}{c + d \sec {\left (e + f x \right )}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sec(f*x+e))**(1/2)/(c+d*sec(f*x+e)),x)

[Out]

Integral(sqrt(a*(sec(e + f*x) + 1))/(c + d*sec(e + f*x)), x)

________________________________________________________________________________________

Giac [B] Leaf count of result is larger than twice the leaf count of optimal. 277 vs. \(2 (85) = 170\).
time = 1.19, size = 277, normalized size = 2.64 \begin {gather*} -\frac {\sqrt {2} {\left (\frac {2 \, \sqrt {2} \sqrt {-a} d \arctan \left (\frac {\sqrt {2} {\left ({\left (\sqrt {-a} \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right ) - \sqrt {-a \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} + a}\right )}^{2} c - {\left (\sqrt {-a} \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right ) - \sqrt {-a \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} + a}\right )}^{2} d + a c + 3 \, a d\right )}}{4 \, \sqrt {-c d - d^{2}} a}\right )}{\sqrt {-c d - d^{2}} c} + \frac {\sqrt {2} \sqrt {-a} a \log \left (\frac {{\left | 2 \, {\left (\sqrt {-a} \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right ) - \sqrt {-a \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} + a}\right )}^{2} - 4 \, \sqrt {2} {\left | a \right |} - 6 \, a \right |}}{{\left | 2 \, {\left (\sqrt {-a} \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right ) - \sqrt {-a \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} + a}\right )}^{2} + 4 \, \sqrt {2} {\left | a \right |} - 6 \, a \right |}}\right )}{c {\left | a \right |}}\right )} \mathrm {sgn}\left (\cos \left (f x + e\right )\right )}{2 \, f} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sec(f*x+e))^(1/2)/(c+d*sec(f*x+e)),x, algorithm="giac")

[Out]

-1/2*sqrt(2)*(2*sqrt(2)*sqrt(-a)*d*arctan(1/4*sqrt(2)*((sqrt(-a)*tan(1/2*f*x + 1/2*e) - sqrt(-a*tan(1/2*f*x +
1/2*e)^2 + a))^2*c - (sqrt(-a)*tan(1/2*f*x + 1/2*e) - sqrt(-a*tan(1/2*f*x + 1/2*e)^2 + a))^2*d + a*c + 3*a*d)/
(sqrt(-c*d - d^2)*a))/(sqrt(-c*d - d^2)*c) + sqrt(2)*sqrt(-a)*a*log(abs(2*(sqrt(-a)*tan(1/2*f*x + 1/2*e) - sqr
t(-a*tan(1/2*f*x + 1/2*e)^2 + a))^2 - 4*sqrt(2)*abs(a) - 6*a)/abs(2*(sqrt(-a)*tan(1/2*f*x + 1/2*e) - sqrt(-a*t
an(1/2*f*x + 1/2*e)^2 + a))^2 + 4*sqrt(2)*abs(a) - 6*a))/(c*abs(a)))*sgn(cos(f*x + e))/f

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {\sqrt {a+\frac {a}{\cos \left (e+f\,x\right )}}}{c+\frac {d}{\cos \left (e+f\,x\right )}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + a/cos(e + f*x))^(1/2)/(c + d/cos(e + f*x)),x)

[Out]

int((a + a/cos(e + f*x))^(1/2)/(c + d/cos(e + f*x)), x)

________________________________________________________________________________________